
1

Risk Considerations for Autonomy Software

Leila Meshkat, Ph.D., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Key Words: Autonomy, Risk, Reliability

SUMMARY & CONCLUSIONS

 The application of increasingly higher level of autonomy

for safety critical systems is inevitable. Ensuring the

reliability of such systems requires managing the

uncertainties that occur due to the increased autonomy. Our

research indicates the increased uncertainty in autonomous

software is due to increased discontinuities in the state space

and inadequate situational awareness.

This paper summarizes key findings related to methods for

the risk considerations of autonomy software. Existing

methods for Verification and Validation (V&V) of autonomy

software are summarized and a method for the assurance of

autonomy software is suggested and demonstrated on a

command execution use case. Risk and reliability are

defined in the context of autonomy and an approach for risk

assessment of autonomy is presented using an example use

case. Key insights regarding areas of uncertainty for

autonomy are provided, along with a suggested architecture

for the systematic consideration of reliability within the

context of a given autonomous planner.

1. INTRODUCTION

 The last decade has seen an extensive amount of research

and development in the area of autonomous software and

systems. The advances in this field have been driven by new

technologies in sensors and actuators, computing, control

theory, modeling and simulation and systems design and

engineering. Due to the breadth of the related disciplines, a

variety of definitions and classifications have been

suggested. This section explains some of these and

establishes the context for the paper.

1.1 Definition

 Boulanin et. al. [1] define autonomy as the ability of a

machine to execute a task, or tasks, without human input,

using interaction of computer programming with the

environment. They sort out the relative notion of autonomy

across and within different disciplines into three categories:

a. The human-machine command and control relationship

b. The sophistication of the machine’s decision-making

process

c. The types of decisions or functions being made

autonomously

 Gat [2] defines autonomy software for spacecraft as any

software that fits into a part of the spacecraft control process

that would normally involve a human. Jonsson et. al. [3]

define the necessary conditions for autonomy to be:

a. Autonomy describes a range of behaviors associated

with agents, systems that can sense the world

around them as well as their own state, can make

decisions about what to do, and can carry out their

decisions through their own action.

b. An autonomous system can be controlled by

commanding it to achieve a set of goals; the system

itself transforms the goals into sequences of actions

that accomplish each goal.

c. An autonomous system flexibly responds to off-

nominal situations by adjusting its activity sequence

to attain the high-level goals and maintain system

safety.

 Pecheur [7] explains that in its simplest form, autonomy

software consists in control sequences that allow the

controlled system to achieve its particular goal while

tolerating a certain amount of uncertainty in its environment.

 For the purposes of this paper, we consider as baseline the

definition provided by Fesq et. al [10].: Autonomy is defined,

as “making decisions and taking actions, in the presence of

uncertainty, to execute the mission and respond to internal

and external changes without human intervention.” This

includes the three main steps of perceive, decide and act.

1.2 Classification & Levels of Autonomy

 Classification schemes and levels have been suggested for

autonomy software in cars [4], UAV’s [5] and spacecraft [2].

We consider the three classes of fault protection,

planning/scheduling and command execution for spacecraft

Figure 1: Autonomy Definition [10]

Perceive Decide Act

2

autonomy, as suggested by Clark et al [12]. The levels

across all these applications are dependent on the degree of

control of the human operator versus the autonomy software

with higher levels of autonomy indicating lower levels of

human control. A Subject Matter Expert in Artificial

Intelligence whom we interviewed, Dr. Russel Knight,

suggested that the level of autonomy is proportionate to the

number and complexity of decisions being made. This is

shown in figure 2.

Figure 2: R. Knight Definition for Levels of Autonomy

1.3 Verification and Validation (V&V)

The two main methods for V&V of Autonomy software

include testing and analysis. Pecheur [7] describes each

of them as follow:

Scenario-Based Testing

 “Software is embedded in test harness that connects to the

inputs and outputs of that component, and drives it through a

suite of test runs. Each test run is an alternated sequence of

provided inputs and expected outputs, corresponding to one

scenario of execution of the tested component. An error is

signaled when the received output does not meet the

expected one.”

Analytical Verification

 “Analytic verification is the branch of software engineering

concerned with establishing, through some mathematically

based analysis, that a computer program fulfills a formally

expressed requirement. Two main approaches to analytic

verification have been developed: Theorem provers build a

computer-supported proof of the requirement by logical

induction over the structure of the program; Model checkers

Perceive Uncertainties Questions for Software Assurance

What is the underlying model of the system?

How does the spacecraft maintain situational awareness?

How does the spacecraft update it's state based on its observations?

What are the possible error modes associated with this?

How do we ensure that the system remains safe if the system state is

not perceived accurately?

What is the underlying model of the environment used?

How is the command execution dependent on the state of the

environment?

How does the system update its understanding of the state of the

enironment?

What are the underlying erroneous states the system can get into?

How do we ensure that the system remains safe if the state of the

environment is not perceived accurately?

Decide

Execute sequence Correct Execution What are the impediments for the correct execution of sequences?

Change the order of

commands in sequence Correctness of new order

How do we determine if the order in which commands are executed

are safe?

What are the implications for various orders of commands?

What is the implication of a wrong sequence?

How do we ensure the correctenss of the sequence being executed?

Act

What are the impediments for executing each decision?

Are there interacting sequences involved?

What are the interections?

How could we ensure they interact safely? Execute Decision Ability to execute correctly

System State Level of accuracy

Environment Level of accuracy

Change sequence

completely correctness of new sequence

Table 1: Risk Identification for Command Execution

3

search all realizable executions of the program for a violation

of the requirement. “

 He concludes that because of the internal complexity of

autonomous controllers, and the huge range of situations that

they can potentially address, scenario-based testing provides

a very limited coverage. Model checking can help to find the

concurrency problems that would be overlooked in testing,

and fix them earlier in the development and thus at a cheaper

cost.

2. RISK CONSIDERATIONS

 Risk is defined as a triplet <What can go wrong?, What is

the likelihood?, What is the consequence?>[7]. By applying

this definition to autonomy risk, we derive the triplet: <What

can go wring due to Autonomy?, What is its likelihood?,

What is its consequence?>. Similarly, system unreliability

due to autonomy can be defined as the occurrence of an

unreliable state for the system due to autonomy.

2.1 Risk Identification

 Our suggested approach for risk identification for

autonomous systems is to determine the key perceptions,

decisions and actions involved, their corresponding

uncertainties and questions that can help to identify the risks

and unsafe states associated with those uncertainties. We

demonstrate this approach using command execution as our

use case for a class of autonomy.

2.2 Use Case: Command Execution

 The first column in Table 1 includes a set of perceptions,

decisions and actions that a given command execution

software conducts. The second column high-lights some of

the uncertainties involved in these decisions and based on

these uncertainties the third column identifies questions that

are addressed for software assurance purposes. In our

example, the system perceives the state of the spacecraft as

well as the state of the environment. It then decides to

execute a given sequence, change the order of commands in

the sequence or change the sequence completely and in each

of these cases there’s uncertainty about the correctness of the

sequence and its corresponding order of commands. The

action taken is the execution of the decision. The key

uncertainty involved in the perception of the system state is

the level of accuracy of this perception. To determine the

hazards and possible failure modes that could lead to an

unsafe system state as a result of this uncertainty, some of

the questions that arise are about the underlying system

model, the situational awareness of the spacecraft, the

method it uses to update its state based on its observations,

the possible error modes associated with it, and finally

probing into the method that the system uses to stay safe if

the system state is not perceived accurately. The expectation

is for this method to be used to facilitate discussions between

software developers and software assurance managers for the

purposes of identifying and managing the risks associated

with autonomous software.

2.3. Distinguishing Features

 The increased uncertainty in autonomous software is due to

increased discontinuities in the state space and decreased

situational awareness.

 In non-autonomous control systems, there are typically a

sequence of activities or scenarios that are implemented.

Autonomous software can jump between sequences in

satisfying goals. Even though this behavior is still in

existence for non-autonomous software, the scope of the

behavior increases for autonomous software. Therefore,

there’s less determinism in the state of the software for

autonomous software than there is for non-autonomous

software. The risk posed by this can be mitigated by

additional V&V of the software.

Autonomy
output

Fish boat

Tank

16%

70%

14%

Passenger boat

Object Action

Fish boat Go away

Passenger

boat

Go away

Tank Bomb

bo
m

b

Go away

Civilian

fatalities

Destroy

enemy

Avoid

conflict

Miss enemy

target

Decision Model

Figure 3: Example Object Detection and Decision Making by Earth Orbiting Satellite

4

Situational Awareness

One of the most cited models of situational awareness has

been suggested by Endsley M. [14]. In this model,

situational awareness is defined as the perception of

environmental elements and events with respect to time or

space, the comprehension of their meaning, and the

projection of their future status.

Situational awareness has been recognized as a critical, yet

often elusive, foundation for successful decision-making

across a broad range of situations. Lacking or inadequate

situational awareness has been identified as one of the

primary factors in accidents attributed to human error [15].

The situational awareness of an autonomous system is

different as compared to humans. In the case of autonomy

for space applications, the knowledge required for

comprehending the perceptions and projecting into the future

may be difficult to anticipate and code into the system a

priori as there is uncertainty about the environment. This

poses a risk which is typically mitigated by initially including

the ground teams in the loop and gradually increasing the

level of autonomy, for instance, in the case of the Mars

rovers [16].

2.4 Risk Analysis Use Case

 Sugawara [8] presents an example of an earth observing

satellites that detects ships and identifies the type of ship as a

fish boat (with a likelihood of 16%), a passenger boat (14%

likely) and a tank (70% likely) of the type. They suggest that

if the detection is incorrect, it could lead to a failure.

 We elaborate on this example by assuming a decision model

for this satellite where if the object is a fish boat or a

passenger boat, the satellite goes away but if it is a tank, it

bombs the tank. As seen on the right-hand side of Figure 3,

the decision is to either bomb or to go away. If it bombs,

there’s a chance that there may be civilian fatalities if in fact

it were a fish boat or a passenger boat. If the object was a

tank, then the decision is correct and the enemy has been

destroyed. If the satellite makes the decision to go away,

then if it were a fish boat or a passenger boat, it has made the

correct decision and avoided conflict. If, however, it was

actually a tank, then it has missed the enemy target.

Planner

Ground
Sequence

System State

Environment

V&V
Engine

System
Level

Reliability

Final
Plan

{p1,…pn}

pi
R(pi)

BBN Model
pi

Relevant Failure Modes
Expected Likelihood of
failure

Figure 4: Proposed Architecture for Incorporating System Reliability into V&V Considerations

5

 Considering the three elements of risk, we can assess the

risk associated with the autonomous object detection and

decision making as follow:

1. What can go wrong? It can make the wrong

decision

2. What is the likelihood of making the wrong

decision?

 Using the Law of Total Probability, we find the likelihood

of an incorrect decision as follows:

P (incorrect decision) = P (incorrect decision| select fish

boat) x P (select fish boat) + P (incorrect decision | select

passenger boat) x P (select passenger boat) +P (incorrect

decision |select tank) x P (select tank)

 Let’s assume that the Decision Maker has much higher

value for not missing a tank than for accidentally bombing a

fish boat or passenger boat so decides to bomb the object

with this given probability distribution.

P (incorrect decision) = P (incorrect decision| select tank) *

1= P (not being tank| 70% tank prior likelihood)

3. What is the consequence? Civilian casualties

associated with the fish boat or passenger boat.

3. SYSTEM LEVEL RELIABILITY

 Software reliability is defined as the probability of failure-

free software operation for a specified period of time in a

specified environment [13]. Software has a greater level of

decision-making authority in autonomous software and these

decisions may lead to system level unreliability even in the

absence of software faults. System reliability is time

dependent and even though decisions that cause higher levels

of system degradation may appear optimal in the short term,

they could prevent the system from achieving its goals over

the entire life cycle of the mission.

 While stochastic modeling methods for the determination of

the optimal sequence of activities to be performed by a rover

on Mars have been developed [9], they do not address the

overarching system unreliability caused by autonomy

software. Typically, on Mars rovers, there are safety

constraints that need to be met. These constraints ensure that

the rover does not run out of power or make any movements

that lead to damage of the hardware. These constraints are

binary – the rover action is either deemed safe or unsafe.

Reliability, however, is a likelihood and therefore can have a

range of values in the interval [0,1]. Each course of action

takes a given toll on the reliability of the rover and has

different implications for its performance over time. For

instance, one action may cause a larger degradation in the

wheels than another. Or one course of action may require a

more complex software procedure than another and hence an

increased likelihood of error.

 We therefore propose an architecture that takes into

account, not just the autonomy software, but the system in

which the autonomy software is operating. This proposed

architecture is shown in Figure 4 and the context is an

autonomous planner.

 As seen in this figure, the planner takes as input the system

state, ground sequence and the information obtained from its

sensors regarding the environment. Based on these inputs, it

generates a set of plans. These plans are run through the

V&V engine to test it for completeness and optimality. A

complete plan is a plan that satisfies all the necessary

constraints in terms of the activities that the rover needs to

perform in order to be safe. An optimal plan is one that can

achieve all the activities with the least amount of resources.

This plan can then be assessed to determine how it affects the

system reliability. The system Reliability, which is

nominally shown using a Bayesian Belief Network (BBN)

model assesses the risks involved for the system for a given

plan and their expected likelihood of occurrence. Based on

this assessment, the plan may or may not satisfy the

reliability constraints for the system. If not, there is a need

for another iteration between the planner and the V&V

engine until a plan is developed which is not only complete

and optimal but also safe. That is the final plan.

4. RISK MANAGEMENT

 The Continuous Risk Management Process used at NASA

is shown in Figure 5 [11]. This process entails the

identification, analysis, planning, tracking and control of

risks. We have explored several methods for risk

identification for autonomy software. The approach

explained in section 3 calls for deliberating on the

perceptions, decisions and actions that are taken by the

autonomous system and software and the uncertainties

associated with them. Another approach for identifying the

risks is to deliberate on the key areas of uncertainty

associated with autonomy software, in terms of the non-

determinisms in the state space and the situational awareness

of the autonomous system. Two methods for the analysis of

these risks has also been suggested. One method is finding

the likelihood and consequence of the risk elements

identified. This is demonstrated with a use case in section 4.

Another method is to determine the system level reliability of

the system that is operating with autonomy software. Once

the risks are identified and analyzed, the risk engineers or

managers can use this information for planning purposes.

This planning would involve making decisions about whether

or not the risks are acceptable and finding an approach for

mitigating or reducing the likelihood or consequence of these

risks. One approach for mitigating the risks is to use testing

or analytical model checking techniques, as suggested in

section 2. Tracking and controlling the risks is an ongoing

activity that is performed over the lifecycle of the

autonomous software and system.

6

Figure 5: NASA Continuous Risk Management – NPR 8000.4B

5. SUMMARY & CONCLUSIONS

 In this paper, we have provided an overview of autonomy

software, in terms of how it is defined, classified and the

methods used for its verification and validation. Using the

definition for autonomy and some of its distinguishing

features, we have suggested methods for identifying risks

related to autonomous system. We have further extended the

definition of risk and reliability to autonomy software and

suggested an approach for risk assessment of autonomous

software and an architecture for the consideration of system

level reliability implications of autonomy software. The risk

assessment is demonstrated using an example use case.

Finally, each of the proposed methods and the connection

between them are clarified in the context of the NASA

Continuous Risk Management Process.

ACKNOWLEDGEMENT

 The research reported in this paper was performed at the Jet

Propulsion Laboratory, California Institute of Technology,

under a contract with NASA. The author gratefully

acknowledges the sponsorship of the Software Assurance

Research Program (SARP).

REFERENCES

1. Vincent Boulanin, “Mapping the Development of

Autonomy in Weapon Systems; A primer on

Autonomy”, Stockholm International Peace

Research Institute, 2016

2. E. Gat, “Autonomy Software Verification and

Validation Might Not Be as Hard as it Seems”, 2004

IEEE Aerospace Conference Proceedings

3. Jonsson, R. Morris, L. Peterson, “Autonomy in

Space Current Capabilities and Future Challenges”,

AI Magazine, Volume 28, No. 4. Winter 2007

4. https://www.techrepublic.com/article/autonomous-

driving-levels-0-to-5-understanding-the-differences/

5. Eric Sholes, Mike Cole, Jason Rupert, Tony

Colquitt, Matt Davis, and Justin Williams,

“Analysis of UAV Behaviors via Simulation (and

Live Flight)”, AIAA-20056199, 2005 AIAA

Modeling and Simulation Technologies Conference

and Exhibit, 2005.

6. C. Pecheur, “Verification and Validation of

Autonomy Software at NASA”, The NASA STI

Program Office NASA/TM-2000-209602

7. Stanley Kaplan and B. John Garrick, “On the

Quantitative Definition of Risk”, March 1981,

Journal of Risk Analysis.

8. Sugawara, K. “JAXA’s activity for assurance of

autonomy spacecraft”, Assurance of Autonomy for

Robotic Space Missions Workshop, August 2018,

Pasadena, CA.

9. Wayne Chi, et. al., “Optimizing Parameters for

Uncertain Execution and Rescheduling Robustness.

ICAPS 2019: 501-509

10. Lorraine Fesq, et. al., “JPL Strategic Plan”

11. Agency Risk Management Procedural

Requirements, Office of Safety and Mission

Assurance, NASA Procedural Requirements NPR

8000.4B

12. Clark, Paula Pingree, Garth Watney, Autonomy &

Control Section 345, Jet Propulsion Laboratory,

“Levels of Autonomy Technical Implementation

Peer Review (TIPR)”

13. Michael R. Lyu , Handbook of Software Reliability

Engineering. McGraw-Hill publishing, 1995, ISBN

0-07-039400-8.

14. M. Endsley, “Situatioal Awareness Misconceptions

and Misunderstandings”, Journal of Cognitive

Engineering and Decision Making 2015, Volume 9, Number

1, March 2015, pp. 4-32

15. Hartel, Smith, & Prince, 1991; Merket, Bergondy,

& Cuevas-Mesa, 1997; Nullmeyer, Stella, Montijo,

& Harden, 2005

16. Estlin, Tara, et al. Increased Mars Rover Autonomy

using AI Planning, Scheduling and Execution.

September 15, 2006.

BIOGRAPHIES

Leila Meshkat, Ph.D.

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA, 91109

leila@jpl.caltech.edu

Leila Meshkat is a Senior Engineer at the Jet

Propulsion Laboratory (JPL)) and an adjunct

lecturer at the Astronautics Department at the

University of Southern California. During

the course of her career at JPL she has

conducted and led numerous Risk and Systems engineering

tasks. She holds a Ph.D. in Systems Engineering from the

University of Virginia, an M.S. in Operations Research from

the George Washington University and a B.S. in Applied

Mathematics from the Sharif University of Technology.

https://www.techrepublic.com/article/autonomous-driving-levels-0-to-5-understanding-the-differences/
https://www.techrepublic.com/article/autonomous-driving-levels-0-to-5-understanding-the-differences/
http://www.cse.cuhk.edu.hk/~lyu/
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

